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Abstract. In this paper we establish several sufficient conditions for the existence of a solution
to the linear and some classes of nonlinear complementarity problems. These conditions involve a
notion of the “exceptional family of elements” introduced by Smith [19] and Isac, Bulavski and
Kalashnikov [4], where the authors have shown that the nonexistence of the “exceptional family of
elements” implies solvability of the complementarity problem. In particular, we establish several
sufficient conditions for the nonexistence as well as for the existence of the exceptional family of
elements.
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1. Introduction

Complementarity theory, which has been studied intensively in the last several
decades, is generally considered to be a domain of applied mathematics. The com-
plementarity problem arises in a variety of contexts such as optimization, game
theory, economics, classical mechanics, stochastic optimal control, etc. [1, 5, 15].
The primary source of complementarity problems are equilibrium problems in
economics, physics and engineering and the necessary conditions for optimality
for mathematical programs.

Because of the many important applications of the complementarity problem,
the development of the conditions assuring the existence of a solution to this prob-
lem was always of big interest. So far many researchers have established a variety
of conditions for the solvability of the complementarity problem. These include
the existence conditions developed by Eaves [2], Kojima [11], Karamardian [8, 9],
Moré [12, 14], Habetler and Price [3], Pang [17] and several other authors.

Our study is motivated by the papers by Smith [20], and Isac, Bulavski and
Kalashnikov [4]. Smith introduced a concept of “exceptional sequence” for a con-
tinuous function and used it to investigate the conditions for the solution of the
complementarity problems. Isac, Bulavski and Kalashnikov extended the results
established by Smith to several kinds of complementarity problems proving that
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the nonexistence of the “exceptional family of elements” implies the solvability of
the complementarity problem.

The above result indicates that a definition of the set of conditions under which
continuous function does not possess the exceptional family of elements would
provide a new practical result in complementarity theory. This problem was invest-
igated in the paper [7]. We proved there that several classes of nonlinear functions
(for some of which it is known that the corresponding complementarity problem
has a solution), do not have the exceptional family of elements. In this paper we
consider a class of continuous functions, which are convex over the convex set
R% \ D, whereD is a compact set. This class of functions is broader than the class
of convex functions ofiR’; , although the most important case is obtained when the
functions are linear transformations. We establish several new sufficient conditions
for the nonexistence as well as for the existence of the exceptional family of ele-
ments. Furthermore, we show how these conditions can be used to determine the
existence of a solution to the linear complementarity problem.

The paper is organized as follows. In the next section several sufficient condi-
tions for the existence and nonexistence of the exceptional family of elements for
the considered class of the nonlinear complementarity problem are presented. An
algorithm to determine the existence of the exceptional family of elements, which
is based upon these conditions is proposed in Section 3. A numerical example and
results of some computational experiments with the algorithm on several LCP are
provided in Section 4. Conclusions are given in the last section.

The following notation is used throughout our paper. The symRélandR” ,
denote the:— dimensional Euclidean space and the nonnegative orthaRt ,of
respectivelye; is defined as a vector with the j-th coordinate being 1 and the others
being 0. The logic symbols, A, 3, andV are defined according to the standard
notation as ‘or’, ‘and’, ‘exists’ and ‘for every’ correspondingly.

2. Exceptional Family of Elements for Linear and Nonlinear Functions

Let f : R} — R”, be a continuous mapping.
We will use the abbreviation EFE for the term ‘exceptional family of elements
for f’, which has been defined in [4].

DEFINITION 2.1. [4]. We say that a set of points’},.o C R", is an exceptional
family of elements forf with respect taR”, if |x"|| — +o0 asr — +o00, and for
eachr > 0, there existg., > 0, such that

() fi(x") = —p,x!, if x >0,

(i) fix") =0, if x =0.

LEMMA 2.1. [4]. For any continuous mapping : R, — R", there exists either
a solution to the nonlinear complementarity problem

NCP(f,R}): findxo € R such thatf (xo) € R", and(xo, f(x0)) =0,
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or an exceptional family of elements f@rwith respect taR’, .

We will restrict now our considerations only to convex functions.

Let f : R} — R", where_f =(f1,..., fa),and f;,i € I ={1,2,...,n}, are
closed, proper convex functions.

Let O' f; denote the cone of recession of the functipni = 1, ..., n, i.e. 0" f;
is a set of all direction vectors along which the functifris nonincreasing [18].

LEMMA2.2. [7]. Letf; : R* — R, i = 1,2,...,n be convex functions, and
Jo={i|R" NO" f; # P&3Ix" € R, fi(x") < 0}. Then

(i) If Jo = @ then there does not exist EFE fgt

(ii) If there exists sucly € Jp, that

e €0t f; A(Viel\{j}(e; 07 )V (ej €0 f; = fi(te;) =0,V1))
A3t € R, fi(toe;) <O @)

then there exists an EFE fgf.

Lemma 2.2 holds also if the convexity requirement is replaced by a weaker
assumption, namely that there exists a compacbsetuch thafR’}, \ D is convex
andf;, i =1,2,...,n, are convex oveR’ \ D. The above assumptions on the sets
D andR’_\ D remain valid throughout the paper. Generalized version of Lemma
2.2 is given in the Corollary 2.1 below.

COROLLARY 2.1. Letf; : R" - R, i = 1, 2, ..., n be convex functions over the
convex seR” \ D. Letus denotdy = {i|R: NO" f; # ¥&3x’ € R\ D, fi(x') <
0}. Then

(i) If Ip = @ then there does not exist EFE fgt

(ii) If there existsj € Iy, such that

e; € 0+fj ANNiel\{j}, (e ¢ ot fi) v (e € o' fi = fi(tej) = 0, V1))
/\E|lo€R,lo€j ERZ_\D’fj(toej)<0 (2)

then there exists an EFE fqf.

Proof. Since the sefy and condition (ii) in Corollary 2.1 are only slight modi-
fication of the set/y and condition (ii) in Lemma 2.2, the proof of the corollary is
similar to the proof of the latter lemma. O

Let f, g : R* — R" be continuous mappings, whefe= (f1, fo, ..., f,) and
g = (g1, &2, ..., g&,). We assume that the functions, g;, (. = 1,2,...,n), are
convex oveiR”.

Let us consider the following (implicit) complementarity problem, introduced
in [4].

ICP(f, g,R%) : findxo € R, such thatg(xo) € R}, f(xo) € R’ and(g(xo),
f(x0)) =0.
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DEFINITION 2.2. [4]. A set of pointSx"},.o C R" is an exceptional family of
elements for the couplef, g), if ||x"|| — +oo asr — +o0, g(x") > 0 for each
r > 0 and there existg, > Osuchthatfoi =1,2,....n

() fitx") = —prgi(x"), if gi(x") > 0;

(i) fitx") =0, if g;(x") =0

LEMMA 2.3. [4]. Let f, g : R* — R" be continuous mappings. If the following

assumptions are satisfied:

(i) the equationg(x) = 0 has a unique solution = b,

(i) g maps a neighborhood of the poinhomeomorphically onto a neighborhood
of the origin,

then there exists either a solution of the proble@P (f, g, R’,) or an exceptional

family of elements for the coupi¢, g).

We will prove in the lemma below the generalization of the Lemma 2.2 to ICP
for the couple of functiongf, g) (see definition in [4]), provided thdd = @.

Let the symboli)g denote the constancy space gfx), i.e. Dy = {y €
R"|y € 0fg; A —y € O*g;} [18].

THEOREM 2.1. Let f, g : R" — R", wheref = (f1, ..., f2), & = (g1, .. &),
fi, gi,i € I = {1, 2, ...,n}, be continuous convex functions oWt. Assume that
g(x) satisfies conditions (i) and (ii) of Lemma 2.3.
Let/§ = {i|0O" f; #0 A Ix' € R, fi(x") <0, g;(x") > 0}. Then
(i) If I§ = @ then there does not exist an EFE for the coupfeg) and the
ICP(f, g, R) problem has a solution.
(i) If there eXIStS] € 1§, such that

ej € 0+f] Adfg e R, foe; e R", f](l‘oe]) <0
A(ej ¢ 0T g; v 31y, g(te;) > 0,Vr > 1))

A Vie I\ {j},
(ej ¢ O+fz) Vv (ej (S 0+f, = ﬁ(tej) > 0, Vl)
A (e ei);/\Elt_i,t_iejeR",gi(t_,-ej)zo)) (3)

then there exists an EFE for the couglg g).

Proof. (i) We will prove first that if there does not exist a functigh with a
nonempty cone of recession, such that there exiSte R”, f;(x') < 0, and
gi(x') > 0, then there does not exist an EFE gt g). The proof is by contradic-
tion. Let{x"},.o be an exceptional family of elements for the coupfeg). From
the assumption (i) of Lemma 2.3 and the convexitygofi = 1, ..., n, it follows
that there exist indicesandrg such that

gi(x") > 0,Vr > ro. (4)
The definition of the EFE thus implies
filx) = —pgi(x") <0, r=>rg (5)
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with ||x"|| — oo. This implies that the level set of; is unbounded and con-
sequently 0 f; # ¢. Inequalities (4) and (5) with! = x', (wherex= € R"),
give that f;(x') < 0 andg;(x’) > 0, which implies that/§ # #. This proves the
first part of the lemma.

(i) Now we will prove that if condition (3) is satisfied, then there exists an
exceptional family forf. Let j € Ip satisfy (3), and letc(r) = te;, t > 1.
Conditionse; € 0" f; and3r, rpe; € R, f;(toe;) < O imply that

£i(x(0) < 0,¥t > to. (6)

From the assumptioMi € 7\ {j},e; € D A 3, tie; € R, gi(tie;) = 0t
follows that

We will prove that
A, filx(®) =0, V>4 8

Let us first consider a case when¢ 0% f;, i # j. Then by convexityf; is unboun-
ded from above along every line with the direction veetprTherefore (8) holds.
Onthe other hand, #; € 0" f;, then by assumptioa; € 0" f; = fi(te;) > 0, Vr,
which implies that inequality (8) holds also in this case.

Now, the alternative; ¢ 0"g; v (3t;, g;(te;) > 0,Vt > t;) implies that

3, gj(tej) > 0, V1 > 1. 9)

In fact, any unbounded sequence on the half-lit®@ will satisfy conditions of the
EFE for (f, g). It can be shown by considering identity
Ji(x(,))

fi(x(4)) = mé’j (x(%))

and substitutinge” = x(z,) and

;L:_ﬁ“@”
T gix@))’

in the expression (i) of the Definition 2.2 of the EFE for the cougleg). We note

that (6) along with (9), implieg., > O, for z, > max{t, 7;}. Moreover, relations

(7) and (8) assure that conditions (ii) in the definition of the EFE for the couple
(f, g) are satisfied. Because relation (8) holds#fae ;, then finally we choose

t, > max{z, fj,t,»,i =1, ..n, i # j,r}. Moreover|x"|| = t., SO|x"|| = oo,

if r - oo. a

t, > max{to, i;}

In Lemma 2.4 and Theorems 2.2, 2.3 and Corollary 2.2 below we assume that
f R, — R", wheref = (f1, f2, ..., f») and that allf; are continuous functions,
convex over the convex s&; \ D, whereD is a compact set. We first prove the
following lemma which will be used in Theorem 2.3 and consequently in the proof
of the Algorithm A.
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LEMMA2.4. Letf;:R" — R, be convex over the convex &t\ D. Let{x"}
EFE, and{-%-} denote convergent subsequence of the seqq%ﬁxﬁe andx will

Ix"71
be its limit. For alli € = {i|x; > 0}, we have thake 0" f;.
Proof. The proof will be by contradiction. Suppose that¢ 0t f; for some
i e I. This implies thatx is a direction of increase fof;, overR’, \ D, which by
Theorem 8.6 in [18] allows us to conclude thatis unbounded from above along
any half-line with the directiorx.
It follows from i € I, that

3ro, Vrj > ro, x] > 0. (10)
By Definition 2.1, we have

fi(x")y = —,u,jxirj <0, Vr;>ro. (11)
Since||x"/|| — 400, asr; — oo andx ¢ 0 f;, we know that

i fi (" 15) = +oc.
So for arbitrarily largeM > 0, there exists; such thatvr; > r; we have

fillx"7 %) > M.

x'i
—
<™l

f( ) > 2 vy 7
; x >—, Vr;>r,

= 2 7
e.qg.

By continuity of f; and

— X, we havedr > max{rg, r1} such that

£ > %

which contradicts to (11).
This ends the proof of the lemma. a

COROLLARY 2.2. Let f; : R" — R, be convex over the convex $&t\ D. If for
giveni € I, and{x"} € EFE, there exists a subsequene;} of {x"} such that
xi” > 0,Vj, then forx = lim;_ ﬁ we haver € 0" f;.

Proof. Proof follows directly from the observation that in the proof of Lemma
2.4 we based only on the relation (10), not requiring fhat O. a

THEOREM 2.2. Let f; : R* — R, be convex oveR" \ D. Let us defind, =
{iIR.NO" f; # ¥&3x' € R%\ D, fi(x") < 0}. If the following three assumptions
are satisfied:

(i) lo#9,
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(i) Vj e Ipthe relation in (2) is not satisfied,
(iii)
L={(j.k),j.kelyj#klAs>0,5s€0"f;, I = j k,xj e R\ D,
f](x]'k) < O,I = _],k} = @,

then there does not exist an EFE férand consequentl C P(f, R’,) prob-
lem has a solution.

Proof. Let us assume that assumptions (i)—(iii) are satisfied. We will prove that
in this case there does not exist an EFE. The proof will be by contradiction. Under
the assumption thal; = ¢, we have thavj, k, j # k, either there is no such
s > 0, that

§ € 0+fj N O+fk,

or there does not exist a poinf; € R \ D, such thatf; (x;x) <0, f;(xx) <O0.

Let {x"} be a sequence in EFE fgi wherex” € R, \ D, and let{x"} be such
subsequence of the sequerieé}, that for some indey, all j-th coordinates are
positive andr’; — oo. We will show that for indiced, such that # j, there can
be only finite number of positive coordinatésin the sequencéx”}. To this end
note that otherwise for some unbounded subsequgri¢ef {x"} (corresponding
to the components] > 0, wherex” = (x1, x3, ..., X;,)), we would have

fi&") ==X <0 and f;(xX") = —puX; <0, Vr.
Becauseg|x"|| — oo, the last two inequalities along with the fact thét € R’
imply that

¥ eRLNSNS;, whereS, = {x|fi(x) <0} and §;={x|f;(x) <0},

which proves thaR’, N S; N S; is an unbounded convex set. It follows tidt N
S; N S; contains a half-line, which gives that there existsuch that

s €0 f;N0O"fiL NRY.

In particular any accumulation point of the sequem]%} satisfies the latter re-
lation. Consequently; # @, which contradicts the assumption. Thus, it follows
that if I; = @, then every infinite subsequence of the sequence which has all j-
th coordinates positive, has the remaining coordinates equal zero (except possible
finite number of elements). Clearly, this subsequence is an EFE.fhiote, that

we have;?—: =e¢;, Vrand therefore; € 0 f;. Since by assumption (ii) condition

(2) does not hold, then
dkely, k#j, ee 0t fr, and 3t > 0, fi(toej) < Q. (12)
Therefore

e; €07 f;NOT f,
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and thatx;x,ﬁ = 0, Vr (as otherwise for soms, f;(x"°) < 0 and f(x©) < O
and thereford; # ¢J). Because all elements of the sequefigg are zeros, then it
follows that the functionyf; is nonnegative alon@ix”}. On the other hand relation
(12) implies thatfk(te]) < 0, Vt > 19, which contradicts earlier conclusion that
fi(tej) = 0, forr = x%, Vr. This completes the proof of the Theorem 2.2. O

THEOREM 2.3. Let f; : R" — R, be convex over the convex &t \ D. Let
us definely = {i|R" N 0T f; # P&3x" € R\ D, fi(x") < 0}. If the following
conditions hold:
(i) Io#9,
(i) Vj € Ipthe relation in (2) is not satisfied.
(i)

L=A{(.k),j kel j#kl3s>0,s€0"f, I = j k,Ix;x € R\ D,

.fl(-xjk) < Ovl = ja k} 7& Q)a
(v)
. i Ji(t
B = oy 200 €07t = ik, oo e fim 2

— lim ykf]( )’)

t—00

» (Vs Y1) #0)}

then there does not exist an EFE férand NC P (f, R’,) has a solution.
Proof. Suppose that it is opposite, namely that there eXist$ € R’ \ D,

which belongs to the EFE fof andY;, = #. Let {x"} € EFE, and{ } denote

7
convergent subsequence of the seque{ﬁrﬁl} andx be its limit. Leti € I=
{i|x; > O}.

Letk e {j|j € I} and{ ’, } be such subsequence of the sequqqéé} that

all coordinatesx,:"} are strictly positive. Let's proceed with choosing subsequences

r/
i

from the sequenc{ } so that as a result we will obtain a sequerh ,”}

7]
where for some sef C I, we have that’ > 0, Vr, Vr € I, andx] = 0,
Vr, VI ¢ I. Itfollows that the sef has more than one element. Indeed, i {k},
then it follows that condition (2) is satisfied wigh= k. This however contradicts
assumption (ii).

This is clear thaf|x" || — oo, with r — oo and that{x"} belongs to the EFE for

f. Because{ ] } is a subsequence of the sequex{eé—} we have that

ir
— — X.
{IIX’II}
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Let us define the st = {i|(i, j) € Iy v 3j € I, (j, i) € I1}. Lemma 2.4 shows
thatx € Ot f;, Vi e I and from the Corollary 2.2, we get thate 0" f;, Vi € I C
I, and thatl ¢ I c I;. Because¥;, = ¢ and; # @, we have that fo(j, k),
wherej, k e I

£ lim &

C f(ix
kf]( )C)’ (13)
t—00 t t—00 t

On the other hand, because the sequgfitebelongs to the exceptional family
of elements and indicesandk belong to/, then
f](ir) = _I’Lri;,
Je(&) = —p, X,
which implies that

NGy —

[ [

(fj(x") =0, Wr

Dividing both sides of the latter equation l}y” || and taking the limit of the left-
side of the equation, with — oo, yields

X" ~r =r (=r
m —L (f"fx )> — lim ( Y S )) =0, Vr (14)
r=oo [lX7 [\ X7l r=oo \ [[lX7 Jl%" |
Given that|#|| — oo with r — oo and that im_ 5 = ¥ 7 = j.k it
follows that the equation (14) contradicts the inequality (13). This completes the
proof of the theorem. O

In the LCP important role play so called P-matrices and S-matrices (and closely
related to thenP, and So-matrices, respectively) [1,10,13,14]. The theorem below
shows some relationship between the S-matrices and tlg. 8¢ recall that A is
an S-matrix if, and only if, the linear complementarity problem

x>0 Ax—b>0, xT(Ax—b)=0

is feasible for allb € R”". Equivalently, A € R"*" is an S-matrix if there is an
x # 0, such thate > 0 andAx > 0O, while A € R"*" is anSpo—matrix if there is
anx # 0, such thatt > 0 andAx > 0.

THEOREM 2.4. (i) If I = ¥ andb > 0, thenA is an S-matrix.

(i) If Ip = @ thenA is an Sp-matrix.

Proof. If Io = ¥ andb > 0, thena!s > 0 for everys > 0 and everyi € I,
which implies that the systems > 0, s > 0 has a solution. Thus it follows from
the definition thatd is anS—matrix. To show the part (i) it is enough to note that
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if Io = ¢, thena!s > 0O for everys > 0, i € I, which implies that the system
As > 0, s > 0 has a nonzero solution. Therefotas anSg—matrix. O

The theorem below provides some properties ofRhefunctions related to the
cone of recession of;, i € I. LetR’}, , denote the set of all € R" with x > 0. We
recall thatf;, i € I is called faithfully convex [19], if it is affine on a line segment
only if it is affine on the whole line containing that segment.

THEOREM 2.5. (i) If afunction f : R, — R" isa P-function andf;, i =1, ...,n
are convex over convex set \ D, then

B=R,N()0"f =0
i=1
Consequentlyi € I,3j € I, such thate; ¢ 0 f;.
(ii) If a function f : R, — R" is a Pp—function andf;, i = 1,...,n are
faithfully convex over convex sit_ \ D, then

Bo=R}, N[ )0 f;\ D7) =0.
i=1
Proof. (i) Let us suppose that the opposite is true, that is a funcfigoonvex
onR’ \ D), is a P-function and # ¢. SinceR’, \ D is fulldimensional, then for
anys € B there existc, y € R% \ D, such thatt = x — y. Thusx — y € R, and
consequently; > y;, Vi. Fromx —y € 0" f;, and convexity off; overR’, \ D it
follows that f; (x) < fi(y), Vi. Therefore,

(i —x)(fi(y) — fi(x)) <0,

for all 7, which contradicts the definition of P-function. The second statement in
part (i) of the theorem follows directly.

(ii) If f is a Po-function andB, # ¥ then fors € By there existy, y € R’ \ D,
such thats = x — y. Thusx — y € R, which implies thaty; > y;, Vi. From
x —y € (10" fi \ D7) and the assumption that is a faithfully convex on
R% \ D it follows that the function is strictly decreasing along every half-line with
the direction vectoy — x. Thus f;(y) > f;(x), Vi, and consequently

(i —x)(fi(y) — fi(x)) <0,

which contradicts the definition of th&)-function. O
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3. An Algorithm to Determine the Existence and Nonexistence of the EFE
for the Linear Transform

The results obtained in the Lemmas 2.2, 2.4, and Theorems 2.2 and 2.3 not only
provide new theoretical results on the existence of the solution to the linear and
some class of nonlinear complementarity problems but, as demonstrated below,
they can be used in the form of the algorithm to determine the existence of the
exceptional family of elements for the affine transformatfan) = Ax —b, where
A eR™ beR".

Now we will restrict our considerations only to the linear functions, that is
fi(x) =a]x — b;, whereq; € R", b; e R, fori =1,2,...,n.

Thus we consider the linear complementarity problem defined as:

LCP(Ax — b,R") : find xo >0 such thatdxo — b >0 andx{ (Axg — b) =0,

where the matrixA” = [a;;] € R"" consists of the column vectoss, i = 1, ...n,
andb = [b;] € R".

We also assume thd@ = ¢. In this case 0 f; = {s € R"|a]s < O} and the set
I defined in previous section has a folg= {i|3s > O,s # 0, als < 0,3x} €
R, aiTxé < b;}

Let us defineejr = aje; + arer, aj, o > 0, ande’y, = a'e; + azer, where
;>0 1=jk.

The following algorithm provides sequence of sufficient conditions for the ex-
istence and nonexistence of the EFE for the linear transforms, which by Lemma 2.1
are sufficient conditions for the existence of the solution tolthe? (Ax — b, R")
problem.

ALGORITHM A

Step 1.If Io = @ then there does not exist EFE f6(and consequentlizC P (Ax —

b, R"}) has a solution). If there exisfse Io, such that

ajTej <0, aiTej >0, i#j,3eR, ajTtoej <bj,aiTej =0=b,<0
(A1)

then there exists an EFE fg.
Step 2.Consider the set

I ={(j,k), j.kelo,j#k|3s > 0,a] s <0,1
:j’k,axjk GR:’_,alijk <b[,l:j,k}.

If I; = @ then there does not exist an EFE ff6(and consequently solution to

LCP(Ax — b, R}) exists).
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Let

={yly >0,a/y<0,t=j.k (j.k)ehAyjaly
= yea] y A (i, vi) # O}

If Y, = @ then there does not exist an EFE, which implies that the solution to
LCP(Ax — b, R) exists.

Consider all pairg, k), where(j, k) € I, such that for some; > 0, «; >,
I =k, j, the vectore, = a;e; + axer, € = ae; + oy e satisfy

aTe]k O,t =j,kAMiel\{J, k}, a ejxr = 0), a e]k < b,
t=j,k,(aiejk=0:>a e]k > b;). (A2)
Let S, denote the set of vectoes; satisfying (A2). IfS; = ¢ then go to Step 3.

If S1 # ¢ then verify whether there exists a vector= ej; in the setY;, N Sy,
such that the equation

yjl@lty —b) = ye(ajty —bj), Vr>=0 (A3)
(wherey = (y1, y2, ...., y»)), is satisfied and if there exists,= e;k satisfying

@l 2 — b)) =5 (al X — b)) (A4)
anda,T)Ejk < b, 1 = j, k. If such a pail(j, k) exists then there exists an EFE for

Step 3 Consider the set

I ={(j. k,DIG. k), (k, D), (j,) €1, j #k#1,35 >0,a] s <0, 7
—] k l Elx]kl €R+, rxjk1<br,7::j,k,l}.

If I; = ¢ then there does not exist an EFE and P (Ax — b, R’,) has a solution.
Let us define

={yly>0,aly<0,v=jkl, (jkI) el
A(yjaly =yealy, T =k 1, ya| y = yiaj y) A (yj. ye. yi) # O}

If Y7, = ¢ then there does not exist an EFE and P (Ax — b, R"}) is solvable.O

We omit the proof of the algorithm for Step 1, and for this part of the Step
2 which involves checking whether or not the sétsand Y;, are empty. These
parts of the proof follow directly from Lemma 2.2 and Theorems 2.2 and 2.3 with
filx) = al-Tx —b;.

In the next theorem we give the proof of the remainder of the Step 2 of the
algorithm. The proof of the Step 3 is analogous to the proof of the first part of the
Step 2.



EXCEPTIONAL FAMILIES AND EXISTENCE RESULTS FOR NCP 195

THEOREM 3.1. If Algorithm A terminates in Step 2 wity # ¢ and the equa-
tions (A3)—(A4) are satisfied, then there exists an EFEffor

Proof. Suppose that the vector = ej; € Y, N Sy and satisfies conditions
(A3) andx;, = ¢, satisfies condition (A4). Condition (A2) assures that the line

x(1) =X +ty, t >0, satisfiesa] x(t) < b; anda x(1) < b, vVt >0and
Vi, i #j.k, 3, alx@t) =b;, Vt>t.

The latter inequality is satisfied because the veetgrsatisfies the inequality
al'eji > 0, along with the implicationd/ ¢ ;s = 0= a ¢/, > b;, Vi # j, k.)

We will now show that any sequende”} of points lying on the linex(z) =
e;-k +tejr, t > tgbelongs to the EFE.

Note that the condition (A3) assures that the veetgris a direction of con-
stancy for the function

Gix(x) = xj(aka —by) —xk(aij —bj).

This means that the functioi j;(x) is constant along the half-line(r) = e;k +
tejr,t > to, .. G (x(1)) = C, Vt, where C is a constant number. From equality
(A4) it follows thatC = 0. Now, equalityG j; (x(¢)) = 0, implies that

fix@)  — fikx(@)

() +tay) (o + o)

Let's write
alx(t,) — b;
fix() = m(a} +ta), (16)
] r
and
T
_aqx(ty) — b,

Je(x(2) = —(“12 TP (a + trag). (17)

Substitution of
Se(x (@) _
(0(]/( + trak) '

andx; = «; + t,a andx’, = o, 4 t,a; in (16)—(17) proves that any unbounded
sequence on the ling(r) belongs to the EFE fof.
This completes the proof of the theorem. a

Algorithm A can be directly extended to the higher number of steps, involving
m—touples(j, ..., j») in them—th step. We note that although such an algorithm
would terminate in at most iterations, the implementation of further steps would
require further study.
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4. Examples

Algorithm A has been tested on various LCP problems studied in the literature.
In particular we investigated the performance of the algorithm on most of the
problems in [1], as well as on two problems given in [6, 16]. Because all tested
problems were low dimensional, the algorithm terminated in either the first, second
or very rarely in the third step.

We illustrate the algorithm on some of the tested problems.

EXAMPLE 4.1 (Problem 4.6.4 in [1])Consider the following LCP problem which
has a solution. The matrix is positive, strictly semimonotone, although it is not a
P-matrix.

N NN
w N w
w N w

i , b=(10,12,9,8)".
1112
It follows immediately thafy = @, which indicates that the corresponding LCP

has a solution. Becaudg = ¢ for everyb then the LCP is solvable for every value
of b.

EXAMPLE 4.2 (Problem 4.11.8 in [1]).This problem has been used to demon-
strate Murty’s last index method.

20.2
A=|2.10], p=@ 11"
0.2.1

Step 1. Itis easily seen that = I. Conditions (A1) are not satisfied for aniye I,.
Step 2. It follows immediately th@ = ¢, which shows that LCP has a solution.
Moreover, it has a solution for every positive valuebotbecause the outcome of
both steps of the algorithm does not depend dor this matrix as long ag > 0.

EXAMPLE 4.3 (Problem 5.1 in [6]).Consider the following problem which is feas-
ible but not solvable

(11 _ T
A_(l 1), b=(2,1".

The Step 1 givegy = {1}. The set of conditions (Al) is clearly satisfied by the
vectore;, which shows that there exists EFE. Also for this problem, the outcome of
the Algorithm would be the same for arbitrary vector

EXAMPLE 4.4 (Problem 4.11.13 in [1])Consider LCP in which

21 0 0
A=128 14 0|, b=(@110D7".

24 24 1
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Step 1. It is easily seen thdy = {1,2} # @. There is noj e I, satisfying
conditions (A1).

Step 2. It follows immediately thdi = {(1,2)} # ¢, and thatY,, = #. The
latter relation follows from the fact that the only solution to the homogeneous
system corresponding to the first two rows of the matrix is (0, 0, y3), y3 > 0.
Therefore, the LCP has a solution. It is clear that the outcome of the algorithm will
be the same for arbitrary vectdr = (b1, bo, b3), withb, > 0, b, > 0.

5. Final Remarks

The performance of the algorithm has been tested on number of LCP problems. The
solution of these problems required at most three steps of the algorithm, which may
be due to the fact they were either low dimensional or the matrix A had a special
structure (e.g. A was a sparse matrix), assuring that either the number of elements
in the setd or I; was small or the conditions occuring in Steps 2 and 3 were easy
to check. Implementation of higher steps (including this part of the Step 2 which
involves the sef; and relations (A3) and (A4)), requires further study. Relatively
straightforward is the implementation of checking whether or not thd,satis
empty.

Another open problem is to generalize results stated in Theorems 2.2, 2.3 and
3.1tothe/CP(f, g, R") problem.
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